Comparative Transcriptome Analysis Reveals a Preformed Defense System in Apple Root of a Resistant Genotype of G.935 in the Absence of Pathogen
نویسندگان
چکیده
Two apple rootstock genotypes G.935 and B.9 were recently demonstrated to exhibit distinct resistance responses following infection by Pythium ultimum. As part of an effort to elucidate the genetic regulation of apple root resistance to soilborne pathogens, preinoculation transcriptome variations in roots of these two apple rootstock genotypes are hypothesized to contribute to the observed disease resistance phenotypes. Results from current comparative transcriptome analysis demonstrated elevated transcript abundance for many genes which function in a system-wide defense response in the root tissue of the resistant genotype of G.935 in comparison with susceptible B.9. Based on the functional annotation, these differentially expressed genes encode proteins that function in several tiers of defense responses, such as pattern recognition receptors for pathogen detection and subsequent signal transduction, defense hormone biosynthesis and signaling, transcription factors with known roles in defense activation, enzymes of secondary metabolism, and various classes of resistance proteins. The data set suggested a more poised status, which is ready to defend pathogen infection, in the root tissues of resistant genotype of G.935, compared to the susceptible B.9. The significance of preformed defense in the absence of a pathogen toward overall resistance phenotypes in apple root and the potential fitness cost due to the overactivated defense system were discussed.
منابع مشابه
Fluctuation in some enzymes related to antioxidant defense system in common bean against Xanthomonas axonopodis pv. Phaseoli
Antioxidant enzymes play an important role in plant defense against pathogenic agents. Following the identification of the pathogen, plants produce active oxygen species (ROS) as one of their first defense responses. To maintain the balance of ROS levels and prevent their harmful effects, plants produce antioxidant peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and superoxide dism...
متن کاملComparative Transcriptomics Atlases Reveals Different Gene Expression Pattern Related to Fusarium Wilt Disease Resistance and Susceptibility in Two Vernicia Species
Vernicia fordii (tung oil tree) is a promising industrial crop. Unfortunately, the devastating Fusarium wilt disease has caused its great losses, while its sister species (Vernicia montana) is remarkably resistant to this pathogen. However, the genetic mechanisms underlying this difference remain largely unknown. We here generated comparative transcriptomic atlases for different stages of Fusar...
متن کاملشناسایی گونههای Phythophthora همراه با پوسیدگی طوقه درختان میوه هستهدار در استان فارس و عکسالعمل برخی پایهها به Phytophthora cactorum
Distribution of Phytophthora species associated with stone fruits decline in Fars was investigated. Of 36 isolates of Phytophthora recovered, 23 were identified as P. cactorum (mostly from infected crown) from almond, apricot, and peach and 13 isolates of P. nicorianae from crown and basal stem of almond and apricot from different environmental conditions. The reactions of crown and root of 6- ...
متن کاملComparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage (Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages
Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae. However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-suscepti...
متن کاملشناسایی گونههای Phythophthora همراه با پوسیدگی طوقه درختان میوه هستهدار در استان فارس و عکسالعمل برخی پایهها به Phytophthora cactorum
Distribution of Phytophthora species associated with stone fruits decline in Fars was investigated. Of 36 isolates of Phytophthora recovered, 23 were identified as P. cactorum (mostly from infected crown) from almond, apricot, and peach and 13 isolates of P. nicorianae from crown and basal stem of almond and apricot from different environmental conditions. The reactions of crown and root of 6- ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017